PHYSICS
HOMEWORK SET 2
Problems and Conceptual Exercises
1. An object of mass, m, is initially at rest. After a force of magnitude, F, acts on it for a time, t, the object has a speed of “v.” If the mass of the object is doubled, and the force is quadrupled, How long does it take for the object to accelerate from rest to a speed of “v” now?
2. In a grocery store, you push a 12.3-kg shopping cart with a force of 10.1 Newtons. If the cart starts at rest, how far does the cart move in 2.50 sec?
3. A 71-kg parent and a 19-kg child meet at the center of an ice rink. They place their hands together and push.
a. Is the force experienced by the child more than, less than, or equal to the force experienced by the parent?
b. Is the acceleration experienced by the child more than, less than, or equal to the force experienced by the parent?
If the acceleration of the child is 2.6 m/s2, what is the parent's acceleration
4. A farm tractor pulls a 3700-kg trailer up an 18° incline with a steady speed of 3.2 m/s. What force does the tractor exert on the trailer (ignore friction).
5. A baseball player slides into 3rd base with an initial speed of 4.0 m/s. If the coefficient of friction between the player and the found is 0.46, how far does the player slide before coming to rest?
6. A 97-kg sprinter wishes to accelerate from rest to a speed of 13 m/s in a distance of 22 m.
a. what coefficient of static friction is required between the sprinter's shoes and the track?
b. Explain the strategy used to get this answer.
7. A certain spring has a force constant, k.
a. if this spring is cut in half does the resulting half spring have a force constant that is greater than, less than, or equal to k?
b. If two of the original full length springs are connected end to end, does the resulting double spring have a force constant that is greater than, less than, or equal to k?
8. A 0.15 kg ball is placed in a shallow wedge with an open angle of 120° as shown in figure 6-27 on page 181 in the book. For each contact point between the wedge and the ball, determine the force exerted on the ball. Assume no friction.
9. A car is driven with a constant speed around a circular track. Answer each of these following question with a yes or no.
a. Is the car's velocity constant?
b. Is the car's speed constant?
c. Is the acceleration constant?
d. Is the acceleration direction constant?
10. The International Space Station (ISS) orbits Earth in a circular orbit about 375 km above the surface. Over one complete orbit, is the work done by Earth on the ISS positive, negative, or zero? Explain.
11. To clean a floor, a custodian pushes on a mop handle with a force of 50.0 N.
a. If the mop handle is at an angle of 55° above the horizontal, how much work is required to push the mop a distance of 0.5 meter?
b. If the angle is increased to 65°, does the work done increase, decrease, or stay the same? Explain.
12. How much work is needed for a 73-kg runner to accelerate from rest to 7.7 m/s?
13. A pine cone of 0.14 kg mass falls 16 meters to the ground landing at 13 m/s.
a. How much work was done on the pinecone by air resistance?
b. What was the average force of air resistance on the pinecone?
14. A car of 1100 kg coasts on a horizontal road at 19 m/s. After crossing an un-paved sand stretch 32 meters long its speed decreases to 12 m/s.
a. If the sandy portion had been only 16 meters long, would the car speed have decreased by 3.5 m/s, more, or less? Explain.
b. Calculate the change of speed.
15. It takes 180 Joules of work to compress a certain spring 0.15 meter.
a. What is the force constant of the spring?
b. To compress it another 0.15 meter, will it require 180 Joules, more, or less? Explain.
16. Calculate the work done by friction as a 3.7-kg box is slid along a floor from point A to point B as in figure 8-16 on page 244 in the book. Do this for all three paths: 1, 2, and 3. Assume that the coefficient of kinetic friction between the box and the floor is 0.26.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment